0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Enhancing IoT Data Prediction Accuracy Using Deep Learning and Metaheuristic Algorithms
نویسندگان :
Safoura Ashoori
1
Khadigh Nemati
2
Mohamad hadi Amini
3
1- دانشکده فنی میرزا کوچک صومعه سرا
2- دانشکده فنی حرفه ای میرزا کوچک صومعه سرا
3- دانشکده فنی حرفه ای میرزا کوچک صومعه سرا
کلمات کلیدی :
ffn
چکیده :
Given the increasing volume of data generated by the Internet of Things and the challenges associated with processing and storing this data in cloud environments, it is essential to employ deep learning methods and metaheuristic algorithms to improve the accuracy of stream data prediction. In this study, four different approaches were evaluated for classifying continuous IoT data: Particle Swarm Optimization, Support Vector Machine, the PSO-SVM combination, and a feedforward neural network integrated with PSO. Considering the characteristics of stream data and the need to avoid local optima, the PSO algorithm was utilized to optimize the weights and parameters of the feedforward neural network. Additionally, PSO was combined with SVM to optimize its parameters, achieving an accuracy of 0.71. The combination of FFN with PSO improved the prediction accuracy to 0.73, demonstrating the superior performance of this method compared to others. These results highlight the high potential of combining deep learning and metaheuristic methods in enhancing the classification accuracy of IoT data
لیست مقالات
لیست مقالات بایگانی شده
AI-Powered Beauty: Innovations, Transformations, and Ethical Considerations
Rana Poureskandar - Abbas Mirzaei - Babak Nouri-Moghaddam
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
Sajedeh Farahbod - Masoud Tohidfar
Improving the Quality of Life: The Experience of Women with MS from AI Chatbot Program
Zahra Lotfi foroushani
Empowering Decision-Making in Venture Investments: A Systematic Review of Machine Learning Applications for Predicting Startup Success
Seyed Mohammad Javad Toghraee - Hadi Nilforoushan - Nafiseh Sanaee
Strategies and Future Horizons of Innovative Entrepreneurship in AI-Based Programming
Milad Ghiasspour
Evaluating Parkinson’s Disease Severity Through Attention-Based STGCN and S2AGCN Models Utilizing Kinect Skeleton Images
Fatemeh Fadaei Ardestani - Nima Asadi
A Hybrid Approach for Intrusion Detection in Computer Systems Using Optimized Deep Neural Networks
Yousef Nahi Salman - Maral Kolahkaj
An Efficient Training-Free Resume Matching System with NLP-Based Extraction and Custom Scoring for Enhanced Candidate Selection
Reyhane Salehbeigi - Noushin Riahi
Early Detection of Congestive Heart Failure in Coronary Artery Disease Patients Using ECG Based Hybrid CNN-LSTM Model
Seyyed Ali Zendehbad - Farinaz Azari - Hadi Dehbovid
Attention Mechanisms in Deep Learning for Multiple Sclerosis Classification
Mahdie Azizi hashjin - Mahsa Yaghoobi - Babak Nouri-Moghaddam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.5