0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Application of machine learning algorithms in the prediction of the reliability of post-tensioned concrete members
نویسندگان :
Pooria Poorahad A.
1
Mahmoud R. Shiravand
2
Mahtab Ebadati
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
artificial intelligence،machine learning،supervised learning،reliability index،Monte Carlo simulation
چکیده :
The recent progress in artificial intelligence is driven by the advancements in new machine learning (ML) algorithms. The vast application of data-intensive ML methods throughout structural reliability analysis problems has paved the way for researchers to predict structural responses and seismic performances of different structures with minimal human intervention. Supervised ML method is used when labelled data are available. In this study, labelled data are created through finite element method, and reliability indices are calculated based on the Monte Carlo simulation method. The numerical models are built with different aspect and ED bar ratios, and the key parameters are randomly chosen with specified distributions. Hence, supervised learning algorithms are employed to predict the reliability index of self-centering post-tensioned piers. Reliability of post-tensioned concrete members decreases with time due to the prestress loss phenomenon. Therefore, these members cannot fulfill the performance objectives that they were initially designed for. Five ML algorithms are utilized in this paper; (i) linear regression, (ii) random forest, (iii) artificial neural network, (iv) k-nearest neighbors, (v) extreme gradient boosting. The database is divided into testing and training sets R-squared and root mean squared error are considered as the metrics used for the comparison of the ML models. Bayesian search is used for hyperparameter optimization of algorithms. The results indicate that extreme gradient boosting has the finest accuracy. The closeness of performances of testing and training sets indicates that overfitting is avoided.
لیست مقالات
لیست مقالات بایگانی شده
Strategies and Future Horizons of Innovative Entrepreneurship in AI-Based Programming
Milad Ghiasspour
AI Hugs the Theology of Peace, but friendly or backstabbing?
Aliasghar Ahmadi
بهبود عملکرد پیشبینی دادههای IOT با رویکرد ترکیبی شبکه عصبی و الگوریتم ژنتیک
محمد هادی امینی - خدیجه نعمتی - صفورا عاشوری
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
Creating a Foundation for Dynamic Difficulty Adjustment within PCG of games using Imitation Learning
Navid Siamakmanesh - Arian Ganji - Monireh Abdoos - Mojtaba Vahidi-Asl
Early Detection of Congestive Heart Failure in Coronary Artery Disease Patients Using ECG Based Hybrid CNN-LSTM Model
Seyyed Ali Zendehbad - Farinaz Azari - Hadi Dehbovid
Brain Age Classification from fMRI Data Using Graph Neural Networks and Evolutionary Algorithm
Nastaran Hassanzadeh - Mohammad Saniee Abadeh
A Comprehensive Approach to Predicting Customer Churn with XGBoost
Reza Najari - Mehdi Sadeghzadeh
Examining the Role of Artificial Intelligence in Enhancing Educational Equity: A Systematic Review
Ali Rahmanipur - Shakila Mohammadi
Empowering Businesses through AI: A Strategic Approach to Implementation
Ramin Feizi - Parham Soufizadeh - Kaveh Yazdifard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.5